Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Lancet ; 401(10385): 1341-1360, 2023 04 22.
Artículo en Inglés | MEDLINE | ID: covidwho-2252541

RESUMEN

BACKGROUND: The USA struggled in responding to the COVID-19 pandemic, but not all states struggled equally. Identifying the factors associated with cross-state variation in infection and mortality rates could help to improve responses to this and future pandemics. We sought to answer five key policy-relevant questions regarding the following: 1) what roles social, economic, and racial inequities had in interstate variation in COVID-19 outcomes; 2) whether states with greater health-care and public health capacity had better outcomes; 3) how politics influenced the results; 4) whether states that imposed more policy mandates and sustained them longer had better outcomes; and 5) whether there were trade-offs between a state having fewer cumulative SARS-CoV-2 infections and total COVID-19 deaths and its economic and educational outcomes. METHODS: Data disaggregated by US state were extracted from public databases, including COVID-19 infection and mortality estimates from the Institute for Health Metrics and Evaluation's (IHME) COVID-19 database; Bureau of Economic Analysis data on state gross domestic product (GDP); Federal Reserve economic data on employment rates; National Center for Education Statistics data on student standardised test scores; and US Census Bureau data on race and ethnicity by state. We standardised infection rates for population density and death rates for age and the prevalence of major comorbidities to facilitate comparison of states' successes in mitigating the effects of COVID-19. We regressed these health outcomes on prepandemic state characteristics (such as educational attainment and health spending per capita), policies adopted by states during the pandemic (such as mask mandates and business closures), and population-level behavioural responses (such as vaccine coverage and mobility). We explored potential mechanisms connecting state-level factors to individual-level behaviours using linear regression. We quantified reductions in state GDP, employment, and student test scores during the pandemic to identify policy and behavioural responses associated with these outcomes and to assess trade-offs between these outcomes and COVID-19 outcomes. Significance was defined as p<0·05. FINDINGS: Standardised cumulative COVID-19 death rates for the period from Jan 1, 2020, to July 31, 2022 varied across the USA (national rate 372 deaths per 100 000 population [95% uncertainty interval [UI] 364-379]), with the lowest standardised rates in Hawaii (147 deaths per 100 000 [127-196]) and New Hampshire (215 per 100 000 [183-271]) and the highest in Arizona (581 per 100 000 [509-672]) and Washington, DC (526 per 100 000 [425-631]). A lower poverty rate, higher mean number of years of education, and a greater proportion of people expressing interpersonal trust were statistically associated with lower infection and death rates, and states where larger percentages of the population identify as Black (non-Hispanic) or Hispanic were associated with higher cumulative death rates. Access to quality health care (measured by the IHME's Healthcare Access and Quality Index) was associated with fewer total COVID-19 deaths and SARS-CoV-2 infections, but higher public health spending and more public health personnel per capita were not, at the state level. The political affiliation of the state governor was not associated with lower SARS-CoV-2 infection or COVID-19 death rates, but worse COVID-19 outcomes were associated with the proportion of a state's voters who voted for the 2020 Republican presidential candidate. State governments' uses of protective mandates were associated with lower infection rates, as were mask use, lower mobility, and higher vaccination rate, while vaccination rates were associated with lower death rates. State GDP and student reading test scores were not associated with state COVD-19 policy responses, infection rates, or death rates. Employment, however, had a statistically significant relationship with restaurant closures and greater infections and deaths: on average, 1574 (95% UI 884-7107) additional infections per 10 000 population were associated in states with a one percentage point increase in employment rate. Several policy mandates and protective behaviours were associated with lower fourth-grade mathematics test scores, but our study results did not find a link to state-level estimates of school closures. INTERPRETATION: COVID-19 magnified the polarisation and persistent social, economic, and racial inequities that already existed across US society, but the next pandemic threat need not do the same. US states that mitigated those structural inequalities, deployed science-based interventions such as vaccination and targeted vaccine mandates, and promoted their adoption across society were able to match the best-performing nations in minimising COVID-19 death rates. These findings could contribute to the design and targeting of clinical and policy interventions to facilitate better health outcomes in future crises. FUNDING: Bill & Melinda Gates Foundation, J Stanton, T Gillespie, J and E Nordstrom, and Bloomberg Philanthropies.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Pandemias/prevención & control , SARS-CoV-2 , Escolaridad , Políticas
2.
Lancet ; 401(10375): 433-434, 2023 02 11.
Artículo en Inglés | MEDLINE | ID: covidwho-2230853

Asunto(s)
COVID-19 , Humanos , SARS-CoV-2
3.
Lancet Planet Health ; 6(8): e670-e681, 2022 08.
Artículo en Inglés | MEDLINE | ID: covidwho-2184862

RESUMEN

BACKGROUND: Household overcrowding is a serious public health threat associated with high morbidity and mortality. Rapid population growth and urbanisation contribute to overcrowding and poor sanitation in low-income and middle- income countries, and are risk factors for the spread of infectious diseases, including COVID-19, and antimicrobial resistance. Many countries do not have adequate surveillance capacity to monitor household overcrowding. Geostatistical models are therefore useful tools for estimating household overcrowding. In this study, we aimed to estimate household overcrowding in Africa between 2000 and 2018 by combining available household survey data, population censuses, and other country-specific household surveys within a geostatistical framework. METHODS: We used data from household surveys and population censuses to generate a Bayesian geostatistical model of household overcrowding in Africa for the 19-year period between 2000 and 2018. Additional sociodemographic and health-related covariates informed the model, which covered 54 African countries. FINDINGS: We analysed 287 surveys and population censuses, covering 78 695 991 households. Spatial and temporal variability arose in household overcrowding estimates over time. In 2018, the highest overcrowding estimates were observed in the Horn of Africa region (median proportion 62% [IQR 57-63]); the lowest regional median proportion was estimated for the north of Africa region (16% [14-19]). Overall, 474·4 million (95% uncertainty interval [UI] 250·1 million-740·7 million) people were estimated to be living in overcrowded conditions in Africa in 2018, a 62·7% increase from the estimated 291·5 million (180·8 million-417·3 million) people who lived in overcrowded conditions in the year 2000. 48·5% (229·9 million) of people living in overcrowded conditions came from six African countries (Nigeria, Ethiopia, Democratic Republic of the Congo, Sudan, Uganda, and Kenya), with a combined population of 538·3 million people. INTERPRETATION: This study incorporated survey and population censuses data and used geostatistical modelling to estimate continent-wide overcrowding over a 19-year period. Our analysis identified countries and areas with high numbers of people living in overcrowded conditions, thereby providing a benchmark for policy planning and the implementation of interventions such as in infectious disease control. FUNDING: UK Department of Health and Social Care, Wellcome Trust, Bill & Melinda Gates Foundation.


Asunto(s)
COVID-19 , Teorema de Bayes , Humanos , Nigeria , Factores de Riesgo , Saneamiento
4.
Sci Rep ; 12(1): 21154, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: covidwho-2151092

RESUMEN

This study aimed to report mortality, risk factors, and burden of diseases in Spain. The Global Burden of Disease, Injuries, and Risk Factors 2019 estimates the burden due to 369 diseases, injuries, and impairments and 87 risk factors and risk factor combinations. Here, we detail the updated Spain 1990-2019 burden of disease estimates and project certain metrics up to 2030. In 2019, leading causes of death were ischaemic heart disease, stroke, chronic obstructive pulmonary disease, Alzheimer's disease, and lung cancer. Main causes of disability adjusted life years (DALYs) were ischaemic heart disease, diabetes, lung cancer, low back pain, and stroke. Leading DALYs risk factors included smoking, high body mass index, and high fasting plasma glucose. Spain scored 74/100 among all health-related Sustainable Development Goals (SDGs) indicators, ranking 20 of 195 countries and territories. We forecasted that by 2030, Spain would outpace Japan, the United States, and the European Union. Behavioural risk factors, such as smoking and poor diet, and environmental factors added a significant burden to the Spanish population's health in 2019. Monitoring these trends, particularly in light of COVID-19, is essential to prioritise interventions that will reduce the future burden of disease to meet population health and SDG commitments.


Asunto(s)
COVID-19 , Neoplasias Pulmonares , Isquemia Miocárdica , Humanos , Desarrollo Sostenible , España/epidemiología
5.
Lancet ; 399(10344): 2381-2397, 2022 06 25.
Artículo en Inglés | MEDLINE | ID: covidwho-2132755

RESUMEN

BACKGROUND: Gender is emerging as a significant factor in the social, economic, and health effects of COVID-19. However, most existing studies have focused on its direct impact on health. Here, we aimed to explore the indirect effects of COVID-19 on gender disparities globally. METHODS: We reviewed publicly available datasets with information on indicators related to vaccine hesitancy and uptake, health care services, economic and work-related concerns, education, and safety at home and in the community. We used mixed effects regression, Gaussian process regression, and bootstrapping to synthesise all data sources. We accounted for uncertainty in the underlying data and modelling process. We then used mixed effects logistic regression to explore gender gaps globally and by region. FINDINGS: Between March, 2020, and September, 2021, women were more likely to report employment loss (26·0% [95% uncertainty interval 23·8-28·8, by September, 2021) than men (20·4% [18·2-22·9], by September, 2021), as well as forgoing work to care for others (ratio of women to men: 1·8 by March, 2020, and 2·4 by September, 2021). Women and girls were 1·21 times (1·20-1·21) more likely than men and boys to report dropping out of school for reasons other than school closures. Women were also 1·23 (1·22-1·23) times more likely than men to report that gender-based violence had increased during the pandemic. By September 2021, women and men did not differ significantly in vaccine hesitancy or uptake. INTERPRETATION: The most significant gender gaps identified in our study show intensified levels of pre-existing widespread inequalities between women and men during the COVID-19 pandemic. Political and social leaders should prioritise policies that enable and encourage women to participate in the labour force and continue their education, thereby equipping and enabling them with greater ability to overcome the barriers they face. FUNDING: The Bill & Melinda Gates Foundation.


Asunto(s)
COVID-19 , COVID-19/epidemiología , COVID-19/prevención & control , Escolaridad , Empleo , Femenino , Equidad de Género , Humanos , Masculino , Pandemias/prevención & control
6.
Health data science ; 2021, 2021.
Artículo en Inglés | EuropePMC | ID: covidwho-2112017

RESUMEN

Background Human migration is one of the driving forces for amplifying localized infectious disease outbreaks into widespread epidemics. During the outbreak of COVID-19 in China, the travels of the population from Wuhan have furthered the spread of the virus as the period coincided with the world's largest population movement to celebrate the Chinese New Year. Methods We have collected and made public an anonymous and aggregated mobility dataset extracted from mobile phones at the national level, describing the outflows of population travel from Wuhan. We evaluated the correlation between population movements and the virus spread by the dates when the number of diagnosed cases was documented. Results From Jan 1 to Jan 22 of 2020, a total of 20.2 million movements of at-risk population occurred from Wuhan to other regions in China. A large proportion of these movements occurred within Hubei province (84.5%), and a substantial increase of travels was observed even before the beginning of the official Chinese Spring Festival Travel. The outbound flows from Wuhan before the lockdown were found strongly correlated with the number of diagnosed cases in the destination cities (log-transformed). Conclusions The regions with the highest volume of receiving at-risk populations were identified. The movements of the at-risk population were strongly associated with the virus spread. These results together with province-by-province reports have been provided to governmental authorities to aid policy decisions at both the state and provincial levels. We believe that the effort in making this data available is extremely important for COVID-19 modelling and prediction.

7.
Lancet Child Adolesc Health ; 6(6): 367-383, 2022 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1927004

RESUMEN

BACKGROUND: Disability and mortality burden of non-communicable diseases (NCDs) have risen worldwide; however, the NCD burden among adolescents remains poorly described in the EU. METHODS: Estimates were retrieved from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019. Causes of NCDs were analysed at three different levels of the GBD 2019 hierarchy, for which mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) were extracted. Estimates, with the 95% uncertainty intervals (UI), were retrieved for EU Member States from 1990 to 2019, three age subgroups (10-14 years, 15-19 years, and 20-24 years), and by sex. Spearman's correlation was conducted between DALY rates for NCDs and the Socio-demographic Index (SDI) of each EU Member State. FINDINGS: In 2019, NCDs accounted for 86·4% (95% uncertainty interval 83·5-88·8) of all YLDs and 38·8% (37·4-39·8) of total deaths in adolescents aged 10-24 years. For NCDs in this age group, neoplasms were the leading causes of both mortality (4·01 [95% uncertainty interval 3·62-4·25] per 100 000 population) and YLLs (281·78 [254·25-298·92] per 100 000 population), whereas mental disorders were the leading cause for YLDs (2039·36 [1432·56-2773·47] per 100 000 population) and DALYs (2040·59 [1433·96-2774·62] per 100 000 population) in all EU Member States, and in all studied age groups. In 2019, among adolescents aged 10-24 years, males had a higher mortality rate per 100 000 population due to NCDs than females (11·66 [11·04-12·28] vs 7·89 [7·53-8·23]), whereas females presented a higher DALY rate per 100 000 population due to NCDs (8003·25 [5812·78-10 701·59] vs 6083·91 [4576·63-7857·92]). From 1990 to 2019, mortality rate due to NCDs in adolescents aged 10-24 years substantially decreased (-40·41% [-43·00 to -37·61), and also the YLL rate considerably decreased (-40·56% [-43·16 to -37·74]), except for mental disorders (which increased by 32·18% [1·67 to 66·49]), whereas the YLD rate increased slightly (1·44% [0·09 to 2·79]). Positive correlations were observed between DALY rates and SDIs for substance use disorders (rs=0·58, p=0·0012) and skin and subcutaneous diseases (rs=0·45, p=0·017), whereas negative correlations were found between DALY rates and SDIs for cardiovascular diseases (rs=-0·46, p=0·015), neoplasms (rs=-0·57, p=0·0015), and sense organ diseases (rs=-0·61, p=0·0005). INTERPRETATION: NCD-related mortality has substantially declined among adolescents in the EU between 1990 and 2019, but the rising trend of YLL attributed to mental disorders and their YLD burden are concerning. Differences by sex, age group, and across EU Member States highlight the importance of preventive interventions and scaling up adolescent-responsive health-care systems, which should prioritise specific needs by sex, age, and location. FUNDING: Bill & Melinda Gates Foundation.


Asunto(s)
Personas con Discapacidad , Enfermedades no Transmisibles , Adolescente , Femenino , Carga Global de Enfermedades , Humanos , Esperanza de Vida , Masculino , Enfermedades no Transmisibles/epidemiología , Factores de Riesgo
8.
Lancet ; 398(10301): 685-697, 2021 08 21.
Artículo en Inglés | MEDLINE | ID: covidwho-1815297

RESUMEN

BACKGROUND: Associations between high and low temperatures and increases in mortality and morbidity have been previously reported, yet no comprehensive assessment of disease burden has been done. Therefore, we aimed to estimate the global and regional burden due to non-optimal temperature exposure. METHODS: In part 1 of this study, we linked deaths to daily temperature estimates from the ERA5 reanalysis dataset. We modelled the cause-specific relative risks for 176 individual causes of death along daily temperature and 23 mean temperature zones using a two-dimensional spline within a Bayesian meta-regression framework. We then calculated the cause-specific and total temperature-attributable burden for the countries for which daily mortality data were available. In part 2, we applied cause-specific relative risks from part 1 to all locations globally. We combined exposure-response curves with daily gridded temperature and calculated the cause-specific burden based on the underlying burden of disease from the Global Burden of Diseases, Injuries, and Risk Factors Study, for the years 1990-2019. Uncertainty from all components of the modelling chain, including risks, temperature exposure, and theoretical minimum risk exposure levels, defined as the temperature of minimum mortality across all included causes, was propagated using posterior simulation of 1000 draws. FINDINGS: We included 64·9 million individual International Classification of Diseases-coded deaths from nine different countries, occurring between Jan 1, 1980, and Dec 31, 2016. 17 causes of death met the inclusion criteria. Ischaemic heart disease, stroke, cardiomyopathy and myocarditis, hypertensive heart disease, diabetes, chronic kidney disease, lower respiratory infection, and chronic obstructive pulmonary disease showed J-shaped relationships with daily temperature, whereas the risk of external causes (eg, homicide, suicide, drowning, and related to disasters, mechanical, transport, and other unintentional injuries) increased monotonically with temperature. The theoretical minimum risk exposure levels varied by location and year as a function of the underlying cause of death composition. Estimates for non-optimal temperature ranged from 7·98 deaths (95% uncertainty interval 7·10-8·85) per 100 000 and a population attributable fraction (PAF) of 1·2% (1·1-1·4) in Brazil to 35·1 deaths (29·9-40·3) per 100 000 and a PAF of 4·7% (4·3-5·1) in China. In 2019, the average cold-attributable mortality exceeded heat-attributable mortality in all countries for which data were available. Cold effects were most pronounced in China with PAFs of 4·3% (3·9-4·7) and attributable rates of 32·0 deaths (27·2-36·8) per 100 000 and in New Zealand with 3·4% (2·9-3·9) and 26·4 deaths (22·1-30·2). Heat effects were most pronounced in China with PAFs of 0·4% (0·3-0·6) and attributable rates of 3·25 deaths (2·39-4·24) per 100 000 and in Brazil with 0·4% (0·3-0·5) and 2·71 deaths (2·15-3·37). When applying our framework to all countries globally, we estimated that 1·69 million (1·52-1·83) deaths were attributable to non-optimal temperature globally in 2019. The highest heat-attributable burdens were observed in south and southeast Asia, sub-Saharan Africa, and North Africa and the Middle East, and the highest cold-attributable burdens in eastern and central Europe, and central Asia. INTERPRETATION: Acute heat and cold exposure can increase or decrease the risk of mortality for a diverse set of causes of death. Although in most regions cold effects dominate, locations with high prevailing temperatures can exhibit substantial heat effects far exceeding cold-attributable burden. Particularly, a high burden of external causes of death contributed to strong heat impacts, but cardiorespiratory diseases and metabolic diseases could also be substantial contributors. Changes in both exposures and the composition of causes of death drove changes in risk over time. Steady increases in exposure to the risk of high temperature are of increasing concern for health. FUNDING: Bill & Melinda Gates Foundation.


Asunto(s)
Causas de Muerte/tendencias , Frío/efectos adversos , Carga Global de Enfermedades/estadística & datos numéricos , Salud Global/estadística & datos numéricos , Calor/efectos adversos , Mortalidad/tendencias , Teorema de Bayes , Cardiopatías/epidemiología , Humanos , Enfermedades Metabólicas/epidemiología
9.
J Epidemiol Community Health ; 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: covidwho-1629386

RESUMEN

BACKGROUND: Over the last 30 years, South Africa has experienced four 'colliding epidemics' of HIV and tuberculosis, chronic illness and mental health, injury and violence, and maternal, neonatal, and child mortality, which have had substantial effects on health and well-being. Using data from the 2019 Global Burden of Diseases, Injuries and Risk Factors Study (GBD 2019), we evaluated national and provincial health trends and progress towards important Sustainable Development Goal targets from 1990 to 2019. METHODS: We analysed GBD 2019 estimates of mortality, non-fatal health loss, summary health measures and risk factor burden, comparing trends over 1990-2007 and 2007-2019. Additionally, we decomposed changes in life expectancy by cause of death and assessed healthcare system performance. RESULTS: Across the nine provinces, inequalities in mortality and life expectancy increased over 1990-2007, largely due to differences in HIV/AIDS, then decreased over 2007-2019. Demographic change and increases in non-communicable diseases nearly doubled the number of years lived with disability between 1990 and 2019. From 1990 to 2019, risk factor burdens generally shifted from communicable and nutritional disease risks to non-communicable disease and injury risks; unsafe sex remained the top risk factor. Despite widespread improvements in healthcare system performance, the greatest gains were generally in economically advantaged provinces. CONCLUSIONS: Reductions in HIV/AIDS and related conditions have led to improved health since 2007, though most provinces still lag in key areas. To achieve health targets, provincial governments should enhance health investments and exchange of knowledge, resources and best practices alongside populations that have been left behind, especially following the COVID-19 pandemic.

10.
Lancet ; 398(10299): 522-534, 2021 08 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1592159

RESUMEN

BACKGROUND: The COVID-19 pandemic and efforts to reduce SARS-CoV-2 transmission substantially affected health services worldwide. To better understand the impact of the pandemic on childhood routine immunisation, we estimated disruptions in vaccine coverage associated with the pandemic in 2020, globally and by Global Burden of Disease (GBD) super-region. METHODS: For this analysis we used a two-step hierarchical random spline modelling approach to estimate global and regional disruptions to routine immunisation using administrative data and reports from electronic immunisation systems, with mobility data as a model input. Paired with estimates of vaccine coverage expected in the absence of COVID-19, which were derived from vaccine coverage models from GBD 2020, Release 1 (GBD 2020 R1), we estimated the number of children who missed routinely delivered doses of the third-dose diphtheria-tetanus-pertussis (DTP3) vaccine and first-dose measles-containing vaccine (MCV1) in 2020. FINDINGS: Globally, in 2020, estimated vaccine coverage was 76·7% (95% uncertainty interval 74·3-78·6) for DTP3 and 78·9% (74·8-81·9) for MCV1, representing relative reductions of 7·7% (6·0-10·1) for DTP3 and 7·9% (5·2-11·7) for MCV1, compared to expected doses delivered in the absence of the COVID-19 pandemic. From January to December, 2020, we estimated that 30·0 million (27·6-33·1) children missed doses of DTP3 and 27·2 million (23·4-32·5) children missed MCV1 doses. Compared to expected gaps in coverage for eligible children in 2020, these estimates represented an additional 8·5 million (6·5-11·6) children not routinely vaccinated with DTP3 and an additional 8·9 million (5·7-13·7) children not routinely vaccinated with MCV1 attributable to the COVID-19 pandemic. Globally, monthly disruptions were highest in April, 2020, across all GBD super-regions, with 4·6 million (4·0-5·4) children missing doses of DTP3 and 4·4 million (3·7-5·2) children missing doses of MCV1. Every GBD super-region saw reductions in vaccine coverage in March and April, with the most severe annual impacts in north Africa and the Middle East, south Asia, and Latin America and the Caribbean. We estimated the lowest annual reductions in vaccine delivery in sub-Saharan Africa, where disruptions remained minimal throughout the year. For some super-regions, including southeast Asia, east Asia, and Oceania for both DTP3 and MCV1, the high-income super-region for DTP3, and south Asia for MCV1, estimates suggest that monthly doses were delivered at or above expected levels during the second half of 2020. INTERPRETATION: Routine immunisation services faced stark challenges in 2020, with the COVID-19 pandemic causing the most widespread and largest global disruption in recent history. Although the latest coverage trajectories point towards recovery in some regions, a combination of lagging catch-up immunisation services, continued SARS-CoV-2 transmission, and persistent gaps in vaccine coverage before the pandemic still left millions of children under-vaccinated or unvaccinated against preventable diseases at the end of 2020, and these gaps are likely to extend throughout 2021. Strengthening routine immunisation data systems and efforts to target resources and outreach will be essential to minimise the risk of vaccine-preventable disease outbreaks, reach children who missed routine vaccine doses during the pandemic, and accelerate progress towards higher and more equitable vaccination coverage over the next decade. FUNDING: Bill & Melinda Gates Foundation.


Asunto(s)
COVID-19 , Vacuna contra Difteria, Tétanos y Tos Ferina , Vacuna Antisarampión , Cobertura de Vacunación/estadística & datos numéricos , Niño , Salud Global , Humanos , Modelos Estadísticos
11.
Nat Commun ; 12(1): 6923, 2021 11 26.
Artículo en Inglés | MEDLINE | ID: covidwho-1537314

RESUMEN

Nationwide nonpharmaceutical interventions (NPIs) have been effective at mitigating the spread of the novel coronavirus disease (COVID-19), but their broad impact on other diseases remains under-investigated. Here we report an ecological analysis comparing the incidence of 31 major notifiable infectious diseases in China in 2020 to the average level during 2014-2019, controlling for temporal phases defined by NPI intensity levels. Respiratory diseases and gastrointestinal or enteroviral diseases declined more than sexually transmitted or bloodborne diseases and vector-borne or zoonotic diseases. Early pandemic phases with more stringent NPIs were associated with greater reductions in disease incidence. Non-respiratory diseases, such as hand, foot and mouth disease, rebounded substantially towards the end of the year 2020 as the NPIs were relaxed. Statistical modeling analyses confirm that strong NPIs were associated with a broad mitigation effect on communicable diseases, but resurgence of non-respiratory diseases should be expected when the NPIs, especially restrictions of human movement and gathering, become less stringent.


Asunto(s)
Enfermedades Transmisibles/epidemiología , Notificación de Enfermedades/estadística & datos numéricos , COVID-19/epidemiología , COVID-19/prevención & control , COVID-19/transmisión , China/epidemiología , Control de Enfermedades Transmisibles , Enfermedades Transmisibles/clasificación , Enfermedades Transmisibles/transmisión , Humanos , Incidencia , Modelos Estadísticos , SARS-CoV-2
12.
Nat Commun ; 12(1): 5026, 2021 08 18.
Artículo en Inglés | MEDLINE | ID: covidwho-1363491

RESUMEN

Nationwide prospective surveillance of all-age patients with acute respiratory infections was conducted in China between 2009‒2019. Here we report the etiological and epidemiological features of the 231,107 eligible patients enrolled in this analysis. Children <5 years old and school-age children have the highest viral positivity rate (46.9%) and bacterial positivity rate (30.9%). Influenza virus, respiratory syncytial virus and human rhinovirus are the three leading viral pathogens with proportions of 28.5%, 16.8% and 16.7%, and Streptococcus pneumoniae, Mycoplasma pneumoniae and Klebsiella pneumoniae are the three leading bacterial pathogens (29.9%, 18.6% and 15.8%). Negative interactions between viruses and positive interactions between viral and bacterial pathogens are common. A Join-Point analysis reveals the age-specific positivity rate and how this varied for individual pathogens. These data indicate that differential priorities for diagnosis, prevention and control should be highlighted in terms of acute respiratory tract infection patients' demography, geographic locations and season of illness in China.


Asunto(s)
Bacterias/aislamiento & purificación , Infecciones Bacterianas/microbiología , Infecciones del Sistema Respiratorio/microbiología , Infecciones del Sistema Respiratorio/virología , Virosis/virología , Virus/aislamiento & purificación , Adolescente , Adulto , Bacterias/clasificación , Bacterias/genética , Infecciones Bacterianas/epidemiología , Niño , Preescolar , China/epidemiología , Femenino , Humanos , Lactante , Masculino , Estudios Prospectivos , Infecciones del Sistema Respiratorio/epidemiología , Estaciones del Año , Virosis/epidemiología , Virus/clasificación , Virus/genética , Adulto Joven
13.
Lancet Reg Health West Pac ; 16: 100268, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: covidwho-1415636

RESUMEN

BACKGROUND: Non pharmaceutical interventions (NPI) including hand washing directives were implemented in China and worldwide to combat the COVID-19 pandemic, which are likely to have had impacted a broad spectrum of enteric pathogen infections. METHODS: Etiologically diagnostic data from 45 937 and 67 395 patients with acute diarrhea between 2012 and 2020, who were tested for seven viral pathogens and 13 bacteria respectively, were analyzed to assess the changes of enteric pathogen infections in China during the first COVID-19 pandemic year compared to pre-pandemic years. FINDINGS: Test positive rates of all enteric viruses decreased during 2020, compared to the average levels during 2012-2019, with a relative decrease of 71•75% for adenovirus, 58•76% for norovirus, 53•50% for rotavirus A, and 72•07% for the combination of other four uncommon viruses. In general, a larger reduction of positive rate in viruses was seen among adults than pediatric patients. A rebound of rotavirus A was seen after September 2020 in North China rather than South China. Test positive rates of bacteria decreased during 2020, compared to the average levels during 2012-2019, excepting for nontyphoidal Salmonella and Campylobacter coli with 66•53% and 90•48% increase respectively. This increase was larger for pediatric patients than for adult patients. INTERPRETATION: The activity of enteric pathogens changed profoundly alongside the NPIs implemented during the COVID-19 pandemic in China. Greater reductions of the test positive rates were found for almost all enteric viruses than for bacteria among acute diarrhea patients, with further large differences by age and geography. Lifting of NPIs will lead to resurgence of enteric pathogen infections, particularly in children whose immunity may not have been developed and/or waned. FUNDING: China Mega-Project on Infectious Disease Prevention; National Natural Science Funds.

14.
Nat Commun ; 12(1): 2609, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: covidwho-1223089

RESUMEN

Forecasts and alternative scenarios of COVID-19 mortality have been critical inputs for pandemic response efforts, and decision-makers need information about predictive performance. We screen n = 386 public COVID-19 forecasting models, identifying n = 7 that are global in scope and provide public, date-versioned forecasts. We examine their predictive performance for mortality by weeks of extrapolation, world region, and estimation month. We additionally assess prediction of the timing of peak daily mortality. Globally, models released in October show a median absolute percent error (MAPE) of 7 to 13% at six weeks, reflecting surprisingly good performance despite the complexities of modelling human behavioural responses and government interventions. Median absolute error for peak timing increased from 8 days at one week of forecasting to 29 days at eight weeks and is similar for first and subsequent peaks. The framework and public codebase ( https://github.com/pyliu47/covidcompare ) can be used to compare predictions and evaluate predictive performance going forward.


Asunto(s)
COVID-19/mortalidad , Modelos Estadísticos , Predicción , Humanos , SARS-CoV-2 , Factores de Tiempo
15.
JAMA Netw Open ; 4(5): e218828, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1210568

RESUMEN

Importance: In-hospital mortality rates from COVID-19 are high but appear to be decreasing for selected locations in the United States. It is not known whether this is because of changes in the characteristics of patients being admitted. Objective: To describe changing in-hospital mortality rates over time after accounting for individual patient characteristics. Design, Setting, and Participants: This was a retrospective cohort study of 20 736 adults with a diagnosis of COVID-19 who were included in the US American Heart Association COVID-19 Cardiovascular Disease Registry and admitted to 107 acute care hospitals in 31 states from March through November 2020. A multiple mixed-effects logistic regression was then used to estimate the odds of in-hospital death adjusted for patient age, sex, body mass index, and medical history as well as vital signs, use of supplemental oxygen, presence of pulmonary infiltrates at admission, and hospital site. Main Outcomes and Measures: In-hospital death adjusted for exposures for 4 periods in 2020. Results: The registry included 20 736 patients hospitalized with COVID-19 from March through November 2020 (9524 women [45.9%]; mean [SD] age, 61.2 [17.9] years); 3271 patients (15.8%) died in the hospital. Mortality rates were 19.1% in March and April, 11.9% in May and June, 11.0% in July and August, and 10.8% in September through November. Compared with March and April, the adjusted odds ratios for in-hospital death were significantly lower in May and June (odds ratio, 0.66; 95% CI, 0.58-0.76; P < .001), July and August (odds ratio, 0.58; 95% CI, 0.49-0.69; P < .001), and September through November (odds ratio, 0.59; 95% CI, 0.47-0.73). Conclusions and Relevance: In this cohort study, high rates of in-hospital COVID-19 mortality among registry patients in March and April 2020 decreased by more than one-third by June and remained near that rate through November. This difference in mortality rates between the months of March and April and later months persisted even after adjusting for age, sex, medical history, and COVID-19 disease severity and did not appear to be associated with changes in the characteristics of patients being admitted.


Asunto(s)
COVID-19 , Mortalidad Hospitalaria/tendencias , Hospitalización/estadística & datos numéricos , Unidades de Cuidados Intensivos/estadística & datos numéricos , Neumonía Viral/diagnóstico por imagen , Factores de Tiempo , Factores de Edad , COVID-19/mortalidad , COVID-19/terapia , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Evaluación del Resultado de la Atención al Paciente , Neumonía Viral/etiología , Sistema de Registros , Factores de Riesgo , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Factores Sexuales , Estados Unidos/epidemiología , Signos Vitales
16.
Lancet Infect Dis ; 21(1): 59-69, 2021 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1059565

RESUMEN

BACKGROUND: Substantial progress has been made in reducing the burden of malaria in Africa since 2000, but those gains could be jeopardised if the COVID-19 pandemic affects the availability of key malaria control interventions. The aim of this study was to evaluate plausible effects on malaria incidence and mortality under different levels of disruption to malaria control. METHODS: Using an established set of spatiotemporal Bayesian geostatistical models, we generated geospatial estimates across malaria-endemic African countries of the clinical case incidence and mortality of malaria, incorporating an updated database of parasite rate surveys, insecticide-treated net (ITN) coverage, and effective treatment rates. We established a baseline estimate for the anticipated malaria burden in Africa in the absence of COVID-19-related disruptions, and repeated the analysis for nine hypothetical scenarios in which effective treatment with an antimalarial drug and distribution of ITNs (both through routine channels and mass campaigns) were reduced to varying extents. FINDINGS: We estimated 215·2 (95% uncertainty interval 143·7-311·6) million cases and 386·4 (307·8-497·8) thousand deaths across malaria-endemic African countries in 2020 in our baseline scenario of undisrupted intervention coverage. With greater reductions in access to effective antimalarial drug treatment, our model predicted increasing numbers of cases and deaths: 224·1 (148·7-326·8) million cases and 487·9 (385·3-634·6) thousand deaths with a 25% reduction in antimalarial drug coverage; 233·1 (153·7-342·5) million cases and 597·4 (468·0-784·4) thousand deaths with a 50% reduction; and 242·3 (158·7-358·8) million cases and 715·2 (556·4-947·9) thousand deaths with a 75% reduction. Halting planned 2020 ITN mass distribution campaigns and reducing routine ITN distributions by 25%-75% also increased malaria burden to a total of 230·5 (151·6-343·3) million cases and 411·7 (322·8-545·5) thousand deaths with a 25% reduction; 232·8 (152·3-345·9) million cases and 415·5 (324·3-549·4) thousand deaths with a 50% reduction; and 234·0 (152·9-348·4) million cases and 417·6 (325·5-553·1) thousand deaths with a 75% reduction. When ITN coverage and antimalarial drug coverage were synchronously reduced, malaria burden increased to 240·5 (156·5-358·2) million cases and 520·9 (404·1-691·9) thousand deaths with a 25% reduction; 251·0 (162·2-377·0) million cases and 640·2 (492·0-856·7) thousand deaths with a 50% reduction; and 261·6 (167·7-396·8) million cases and 768·6 (586·1-1038·7) thousand deaths with a 75% reduction. INTERPRETATION: Under pessimistic scenarios, COVID-19-related disruption to malaria control in Africa could almost double malaria mortality in 2020, and potentially lead to even greater increases in subsequent years. To avoid a reversal of two decades of progress against malaria, averting this public health disaster must remain an integrated priority alongside the response to COVID-19. FUNDING: Bill and Melinda Gates Foundation; Channel 7 Telethon Trust, Western Australia.


Asunto(s)
COVID-19/epidemiología , Malaria/epidemiología , Malaria/mortalidad , SARS-CoV-2 , África/epidemiología , Antimaláricos/uso terapéutico , Teorema de Bayes , Humanos , Incidencia , Mosquiteros Tratados con Insecticida , Malaria/tratamiento farmacológico , Malaria/prevención & control , Modelos Estadísticos , Morbilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA